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ABSTRACT
In naval engineering and related disciplines, it is common for dynamic models of the human body to be

used in conjunction with quantitative records of body and ship motions, in order to study human balance

behaviour while performing various shipboard activities. Research in this area can lead to improvements in

ship operations and designs that improve crew safety and efficiency. This paper presents the development

of a new spatial 18 degree-of-freedom (DOF) ship-inverted pendulum model that incorporates 6 DOF ship

motion and 3 DOF joints representing ankle, knee, waist, and neck motions. The derived model is then

validated by comparing it to similar models derived using alternative methods but simulated under equivalent

input conditions.
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DÉRIVATION ET VALIDATION D’UN MODÈLE DE STABILITÉ POSTURALE HUMAIN
SPATIALE AVEC DE MULTIPLES LIENS

RÉSUMÉ

Mots-clés : .

1. INTRODUCTION

Dynamic models of the human body can be used to study human postural response to moving environ-

ments. Presented here is the development and validation of a multi-link spatial model intended to be used

to study the relationship between sensory inputs and human balance performance. The procedure used to

derive the model is novel because it uses a method of automatically deriving the equations of motion in

three dimensions in a format which can be directly written in the standard matrix form of Ax = b without

additional algebraic manipulation. Validation of the model is accomplished by comparing simulation results

with three published models of varying complexity.
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2. MOTIVATION

It is generally agreed upon that multibody dynamics modelling techniques are well suited to problems

in biomechanics and nonlinear system design [1]. In particular, the chain-link structure of the human body

makes it well suited to being modelled with multibody dynamics derivation methods that are capable of

automatically generating and solving the equations of motion of mechanical systems, if the mass properties,

geometrical properties, connection types, and externally applied forces of the system are known before-

hand [2]. Many postural stability models with four or more links have been derived in two dimensions;

however, few exist in three dimensions due to the computational complexity. Some models have been de-

veloped that combine separate sagittal and frontal plane models [3, 4]. A spatial inverted pendulum model

has been developed for use in shipboard research [5] and a double-link spatial inverted pendulum has been

developed for use in studying balance control in robots [6].

Typically the number of links in an inverted pendulum postural stability model is defined by the specific

types of motion that one wishes to study. As far back as 1981, it was identified that a single-link inverted

pendulum does not adequately describe human postural dynamics, since investigations show that significant

movement occurs at all joints, not only at the ankle [7]. An experiment was carried out where the joint

angles of subjects were monitored after experiencing translational displacements and there was significant

movement measured at ankle, knee, waist, and neck joints. This indicated that a model with at least four

degrees of freedom in two dimensions was necessary to represent human sway. Additional research has

shown that a model with at least four links is needed for studying sensory control mechanisms [8], and that

neglecting to include a knee joint can greatly limit possible control strategies [9]. There is also evidence

that the a human’s head position receives additional stabilization control in order to maintain a stable optical

image of the world [10, 11]. Less research has been conducted on the usefulness of spatial postural stability

models, but those that have point out that centrifugal and Coriolis forces have no equivalent in a planar model

due to their formulation as cross products [6], and that correlations with experimental results imply that a

three-dimensional model is necessary in order to fully understand how balance is maintained in everyday

life [12].

Based on these past studies, the objective of the current work is to derive the equations of motion for a

multi-link spatial inverted pendulum for use in studying human postural stability on board ships at sea. A

four-link inverted pendulum model was chosen to allow for motion equivalent to that provided by ankles,

knees, waist, and neck.

3. SIMULATION CONFIGURATION

The system to be simulated consists of a human standing on the deck of a ship which is operating in a

variety of sea states. Figure 1 shows the general structure and sequence of operations for the simulation. This

paper will focus mainly on the ‘system dynamics model’ and ‘comparison to other models’ components.

Ship Motion

Human/Ship
Properties

Sensory
Model

Control
Model

Integration Loop

States &
Forces

Compare to
Experiments

Simulation Loop

System
Dynamics
Model

Compare to
Other Models

Fig. 1. Overall simulation operations flow.
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3.1. System Configuration
The coordinate systems and degrees of freedom defined in the model are shown in Fig. 2. There are 18

degrees of freedom (DOF) divided among the five bodies, which are modelled using generalized coordinates

derivatives labelled as ẋk
i , where k indicates body number, and i is a sequential index for each body. Coordi-

nate system 0 is the origin in inertial space. Coordinate system 1 is the ship body-fixed coordinate system,

and is located at the inverted pendulum attachment point. The X-axis points toward the ship bow (front),

and Y-axis points toward port (left). Coordinate systems 2 through 5 are body-fixed coordinate systems for

each of the four inverted pendulum links.

Fig. 2. Model coordinate systems and generalized coordinate derivatives.

The first 6 DOF define the dynamics of the ship’s motion. The translational DOF of the ship are defined

in the ship frame rather than the inertial frame for reasons that will be discussed subsequently.

4. DERIVATION OF THE EQUATIONS OF MOTION

The derivation of the equations of motion used here is based on an automated method of deriving the

equations of motion for open chain-like mechanisms in a form that lends itself well to matrix mathemat-

ics [13]. The notations used in [13] have been modified for this paper in order to satisfy standard variable

labelling practices. The method presented in [13] also does not go into detail on several important aspects,

including how to properly extend the procedure to three degrees of freedom per joint, how to incorporate

translational degrees of freedom, and how to solve for reaction forces resulting from constrained motion. In

order to accommodate these limitations, a second reference was used which documents a similar automated

method of deriving the equations of motion, but in tensor notation [14]. While tensor notation lends itself

well to the syntax of programming languages, ensuring that the simulation code is correctly implemented

can be more difficult.

4.1. General Equations of Motion
Based on Kane’s method and the principle of virtual work [13], Euler’s equations of motion of a system

can be written as:

k

∑
i

∑ f k ∂v k

∂qi

=
k

∑
i

∑mkv̇ k
G

∂v k

∂qi

(1)

k

∑
i

∑mk ∂wk

∂ ẋi

=
k

∑
i

∑
[

Ikẇk +wk
× (Ikwk)

] ∂wk

∂ ẋi

(2)

The index k is cycled over the number of bodies in the system, and the index i is cycled over the number

of generalized speeds, qk, and generalized coordinate derivatives, ẋk, defined for each body. The terms wk
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and vk
G are the angular velocity and velocity of the centre of gravity, respectively. If the velocity partial

derivatives are written as Vk and Wk, and Q is the transformation between ẋk and qk, then vk
G and wk can be

written as:

vk
G = (qk)T Vk = (ẋk)T QVk = (ẋk)T Vk

Q (3)

wk = (ẋk)T Wk (4)

These terms and their time derivatives can be substituted into Eqs. (1) and (2) to give:

k

∑
[

(fk)T (Vk
Q)

T = mk(ẍk)T Vk
Q(V

k
Q)

T +mk(ẋk)T V̇k
Q(V

k
Q)

T
]

(5)

k

∑
[

(mk)T (Wk)T = (ẍk)T Wk(Ik0)T (Wk)T +(ẋk)T Ẇk(Ik0)T (Wk)T +(ẋk)T Wk(Ik0)T (ΩΩΩk)T (Wk)T
]

(6)

where ΩΩΩk is the skew-symmetric matrix of wk and the superscript (k0) indicates that a variable has been

defined in local coordinates and transformed to inertial coordinates. Since each term evaluates to a vector, a

transpose operation can be performed allowing Eqs 5 and 6 to be simplified to:

k

∑
[

Vk
Qfk = mkVk

Q(V
k
Q)

T ẍk +mkVk
Q(V̇

k
Q)

T ẋk
]

(7)

k

∑
[

Wkmk = WkIk0(Wk)T ẍk +WkIk0(Ẇk)T ẋk +WkΩΩΩkIk0(Wk)T ẋk
]

(8)

Equations 7 and 8 can be combined since they are written in terms of the same variables and the following

similar terms can be collected:

A =
k

∑
[

mkVk
Q(V

k
Q)

T +WkIk0(Wk)T
]

(9)

B =
k

∑
[

mkVk
Q(V̇

k
Q)

T +WkIk0(Ẇk)T
]

(10)

C =
k

∑WkΩΩΩ
kIk0(Wk)T (11)

fff =
k

∑Vk
Qfk +

k

∑Wkmk (12)

The equations of motion can then be simply written as:

Aẍ+Bẋ+Cẋ = fff (13)

4.2. Partial Velocity and Partial Angular Velocity Matrices
The use of partial velocity matrices is a convenient method for automatically generating dynamics equa-

tions, as it allows each individual rigid body’s state variables to be defined in the body’s local coordinate

system, and then be transformed to the global coordinate system when substituted into the governing equa-

tions.
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4.2.1. Partial Angular Velocity Matrices
The first step for determining the partial angular velocity matrices Wk, is to define the coordinate trans-

formation matrices between body coordinate systems. These transformations can then be combined to

determine the transformation between each body coordinate system and the inertial coordinate system. For

this model, Bryant angles, θθθ k, which use an XYZ body-fixed rotation sequence, were selected. This rotation

convention is commonly used in ship-based simulations. Coordinate rotations are calculated for each body

coordinate system and then are multiplied together to determine the overall rotation from individual body

frames to the inertial frame.

The resulting matrix can be used to transform any vector quantity between coordinate systems. This

means that given any vector rL defined in a local coordinate system, and Rk0, a transformation from the

local coordinate system to inertial coordinates, one can calculate the vector in inertial coordinates rG as:

(rG)
T = (rL)

T Rk0 (14)

The partial angular velocity matrix is basically the sequence of rotations needed to rotate an angular

dimension from a local coordinate system to the global coordinate system. For angular degrees of freedom

this is the local to global transformation matrix, and for translational degrees of freedom it is just a zero

matrix since the partial angular velocity derivative for a translational coordinate is zero.

In the ship–inverted pendulum system there are 6 DOF associated with the ship and 12 associated with the

inverted pendulum, so the resulting partial angular velocity matrices (with dimensions 18x3) can be defined

as:
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(15)

where O is a 3x3 zero matrix and the superscript (s) differentiates the ship translational DOF from angular

DOF.

4.2.2. Partial Velocity Matrices
The partial velocity matrix Vk is defined in a similar way to the partial angular velocity matrix, except that

the dimensions of the links need to be taken into account. The partial velocity matrices of the ship-inverted

pendulum model are:

V1 =
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O
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V3 =
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(16)

where [Srk] and [Sqk] are skew-symmetric matrices of the vectors that define, in body k local coordinates,

the link centres of gravity and subsequent link connection points, respectively.

Next, the partial angular velocity matrix Wk and partial velocity matrix Vk are differentiated with respect

to time in order to obtain Ẇk and V̇k.

The inertia matrices Ik0 are obtained by defining the inertia properties for each body Ik in their local coor-

dinate systems and then rotating them into the global coordinate system using the following transformation:

Ik0 = Rk0Ik(Rk0)T (17)

Finally, the partial velocities Vk and partial velocity derivatives V̇k are pre-multiplied by Q to obtain Vk
Q

and V̇k
Q. This allows the equations defined in terms of q and q̇ to be written in terms of ẋ and ẍ with the

transformation:

(q)T = (ẋ)T Q (18)

For the ship–inverted pendulum model the matrix is:

Q =

















R10 O R10 R10 R10 R10

O R10 O O O O
O O R20 R20 R20 R20

O O O R30 R30 R30

O O O O R40 R40

O O O O O R50

















(19)

Now that all of the terms in Eq. (13) have been defined, the following sections will discuss how the

equations are customized to specific constraint conditions and numerically solved.

4.3. Prescribed Ship Motion
The model’s first 6 DOF are ship angular and translational motions, and thus have already been determined

when the simulation starts. This means that Eq. (13) can be rearranged (with y substituted for ẋ) as:

Aẏ = fff −By−Cy = d (20)

and partitioned by degrees of freedom as:

A1

A3 A4

ẏ1

ẏ2

d1

d2

A2

(21)
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where A1, A2, d1, and ẏ1 correspond to the equations for the ship DOF, and A3, A4, d2, and ẏ2 correspond

to the equations of the inverted pendulum DOF. This allows the dynamic problem to be solved using the

lower partition:

A3A4

ẏ1

ẏ2 d2

(22)

This is convenient because A1 contains the mass properties of the ship, and d1 contains the external forces

acting on the ship, both of which are unknown. However, if the ship inertial properties were known, the

applied forces could be determined, should they be of interest. Further, it is observed that the fully-coupled

nature of the equations is retained such that the effect of the inverted pendulum on the ship, though small in

practice, is not neglected.

4.3.1. Ship-Pendulum Reaction Forces
The translational DOF are defined such that they represent the accelerations of the ship in the ship frame

rather than the inertial frame. They are modelled this way because the ship acceleration data, that will

be used with the model, was recorded in the ship frame with an inertial sensor located near the point of

interest. This avoids the need to transform the data to the point of interest which would require knowledge

of the location of the centre of gravity of the ship which is not generally known, and is not constant due to

consumption of fuel, potable water, stores, and active stabilization systems (when present and engaged).

It is useful to be able to solve for the translational reaction forces between the ship and the inverted

pendulum. By adding new unknown force terms to the corresponding equations that were removed in the

previous section, one can rearrange the equations to solve for the reaction forces while still including the

prescribed ship accelerations.

If Eq. (22) is expanded to display the removed matrices and separate linear force terms, and A is instead

partitioned into 18x3 submatrices it would appear as:

A1 A2 A3 A4 A6 A1 A2A5

ẏ2 d2

ẏ1

1

ẏ1s
1

V1s
Q

f1sẏ1

1

ẏ1s
1

d1

(23)

The greyed out terms are the ones that were transfered to the right side of the equation. When the forces

are brought over to the left side of the equation and the ship angular terms removed, it becomes:

A3 A4 A6 A1 A2A5

ẏ2 d2

ẏ1

1

ẏ1s
1

d1

V1s
Q

f1s

(24)

In this form the translational reaction forces can be solved for using the same mathematical procedure

used to solve for the angular accelerations.
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4.4. Method Used to Constrain Joints
In order to temporarily simplify the model to compare it to other models it is useful to be able to lock

the DOF of the inverted pendulum. This can be done by simply removing any control forces, setting the

positions and speeds of those DOF to zero at each time step, and removing the acceleration terms from the

equations of motion. Furthermore, the equations for those DOF can be easily modified to solve for joint re-

action forces and moments instead of the accelerations. Since relative angular velocity components between

bodies are used as generalized speeds, then the constraining moment components will appear uncoupled in

the corresponding equations [14]. For example, all of the joints can be locked and reaction moments solved

for in Eq. (24) by setting all of the ẏ terms to zero and substituting with terms that allow one to solve for the

reaction moments instead. The result with substitutions on the left hand side of the equation is:

f1s

m2

−V1s
Q −W1

−W2
−W3

−W4 m3

m4

m5

A1 A2d

ẏ1

ẏ1s

(25)

4.5. Numerical Solution
As it was shown with Eq. (13) and the subsequent sections which derived its components, the equations

of motion can be written as:

A(θθθ )ẍ+B(θθθ)ẋ+C(θθθ , ẋ)ẋ = fff (θθθ ) (26)

which indicates that all of A, B, C, and fff are functions of the current state and therefore must be recalculated

at each time step of the simulation. When performing a simulation using this equation the only unknown is

ẍ so the equation can be rearranged as:

ẍ = A−1( fff −Bẋ−Cẋ) (27)

In order to use this equation with a time integration algorithm it is necessary to reduce it in order from N

second order differential equations to 2N first order differential equations. One approach is to write,
[

θ̇θθ

ẍ

]

=

[

Tẋ
A−1( fff −Bẋ−Cẋ)

]

(28)

where the T is the transformation from generalized coordinate derivatives, ẋ, to Bryant angle derivatives, θ̇θθ .

These equations are numerically integrated to calculate updated values of ẋ and θθθ at each time step.

5. MODEL VALIDATION

In order to validate the MATLAB code that simulates the dynamic equations of the four-link inverted

pendulum model (4BAR), its simulation results were compared with three existing, published models that

were created by members of the Carleton University Applied Dynamics Laboratory. The models were

assigned the same mass properties and exposed to the same ship motions and control forces, and their states

and reaction forces were compared.

The first model, GRM3D, was equivalent to having all four inverted pendulum joints constrained. The

second model, PSM3D, was equivalent to having all but the first joint constrained. Input ship motions for

these validations were obtained from two sources. The first was simulated ship data that was used to validate

GRM3D against PSM3D. The second was actual ship motion data recorded during a recent heavy-weather

sea trial aboard the Quest research vessel [15, 16] using an inertial sensor. The third model was equivalent

to having no joints constrained, but input ship motion was limited to 1 DOF translational accelerations.
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5.1. Comparison Metric
The metric used to compare the simulation results between models is called a normalized root mean

square error (NRMSE) and is defined as:

NRMSE (%) =

√

1
n ∑(x1

i − x2
i )

2

xmax − xmin

×100 (29)

where x1
i and x2

i are data points from the first and second data sets, and n is the number of data points. Root

mean square error is a useful metric for evaluation of the differences between datasets when the data are

cyclic. With standard error calculations, normalized error calculations become inflated when both data sets

approach zero which is less of an issue with root mean square calculations.

5.2. Validation with GRM3D
Graham’s model is a 2D rigid body with no DOF attached to a ship base with 1 DOF of angular motion

and 2 DOF of translational motion intended for studying human reactions to ship motion [17]. GRM3D is a

spatial version of Graham’s model that can be simulated in FORTRAN under any 6 DOF input deck motions

and with various options for attachments to a hanging pendulum or a cart load [18]. If all of the joints in

the 4BAR model are locked as formulated in Eq. (25), then it should behave the same as GRM3D, which

provides an opportunity for model validation.

The simulated ship motion included velocities, accelerations, angular orientations, angular velocities, and

angular accelerations. Reaction forces and moments were compared between the two models and the results

are shown in Figs. 3 and 4.
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Fx (N)
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GRM3D
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Fig. 3. Comparison of reaction forces between 4BAR and GRM3D. NRMSE 0.51% (Fx), 0.18% (Fy), and 0.15% (Fz).

5.3. Validation with PSM3D
PSM3D is a single-segment, single–joint spatial inverted pendulum postural stability model written in

FORTRAN [5]. Similar to GRM3D, it can also be simulated under any prescribed motions and has various

options for attachments to other rigid bodies and loadings. If all of 4BAR’s joints are locked except for the
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Fig. 4. Comparison of reaction moments between 4BAR and GRM3D. NRMSE 0.41% (Mx), 0.57% (My), and

0.80% (Mz).

first one, then it should behave the same as the PSM3D inverted pendulum model as long as both models

use the same control system. In the PSM3D model there are control moments calculated for roll and pitch

using a simple PD controller, which was implemented in the 4BAR model.

Four primary validation tests were run for the two models. The first used the same generated ship motion

that was used for the GRM3D comparison. The second and third used two different six-minute recordings

of measured ship motion. The fourth used a forty-minute recording from the same sensor. The results from

all four tests were equally successful, and graphed results from the second test are shown in Figs. 5 and 6.

5.4. Validation of Multiple Links
For validation of the model with no joints constrained there was not a spatial model readily available, so

instead, a comparison was made with a published 2D cart–inverted pendulum model [19]. The equations of

motion used for the cart–inverted pendulum model (CARTIP) were:

Mq̈+Cq̇+Kq = 0 (30)

where M, K, and C are the mass, stiffness, and damping matrices.

In 2D, the only difference between the cart–inverted pendulum model and the ship-inverted pendulum

model is that the ship can experience rotational motion as well as translational motion. For this test, the

input ship motion was reduced to one degree of freedom translational motion.

The results of the test are shown in Fig 7. The data shown is for the fourth link, because its motions and

errors were the largest. The other links all had very similar results.

6. CONCLUSIONS

Comparisons of the new spatial inverted pendulum model with existing models show that the new model

performs almost exactly the same as existing ones. The small differences between models are attributed to
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Fig. 5. Validation test angles for 4BAR and PSM3D. NRMSE 0.32% (θx) and 0.45% (θy).

variations in implementation resulting in computational differences between the MATLAB and FORTRAN

models. Future work on the derived model will involve developing a control system which combines experi-

mental sensory data with the complexity of a four-link spatial model, which will be used to better understand

human postural stability control strategies.
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